clocked by # 4/4/17

CETIFICATION

SDG No:

1701478R1

Laboratory:

Eurofins, Folson, CA

Site:

BMSMC

Matrix:

Air

SUMMARY:

Air samples (Table 1) were collected on the BMSMC facility. The BMSMC facility is located in Humacao, PR. Samples were taken January 26, 2017 and were analyzed in Eurofins Laboratory of Folson, California that reported the data under SDG No.: 1701478R1. The sample results were assessed according to USEPA the documents described in the following order of precedence: QC criteria from "Compendium Method TO-17. Determination of Volatile Organic Compounds (VOCs) In Ambient Air Using Active Sampling Onto Sorbent Tubes (modified), January, 1999"; In addition the following guideline is employed for set up of the GC/MS analytical system including column selection, MS tune requirements, calibration protocols, etc., as per TO-17 method requirements: USEPA Hazardous Waste Support Branch. Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #6. June, 2014). The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data samples summary form show analytes results that were qualified.

In summary, the results are valid and can be used for decision making purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE	MATRIX	ANALYSIS PERFORMED
	DESCRIPTION		
1701478R1-01A	B18SS-1DUP-012617	Air	Naphthalene
1701478R1-02A	B18SS-1-012617	Air	Naphthalene
1701478R1-03A	B18SS-2-012617	Air	Naphthalene
1701478R1-04A	B18SS-3-012617	Air	Naphthalene
1701478R1-05A	B18SS-4-012617	Air	Naphthalene
1701478R1-06A	B18SS-5-012617	Air	Naphthalene

Parfael Int

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

March 29, 2017

Client Sample ID: B18SS-1DUP-012617

Lab ID#: 1701478R1-01A

EPA METHOD TO-17

File Name: 6020111R1 Date of Extraction: NADate of Collection: 1/26/17 5:43:00 PM
Dil. Factor: 1.00 Date of Analysis: 2/1/17 12:46 PM

Rpt. Limit Rpt. Limit Amount Amount

 Compound
 Rpt. Limit (ng)
 Rpt. Limit (ug/m3)
 Amount (ng)
 Amount (ug/m3)

 Naphthalene
 1.0
 2.5
 0.61 J
 1.5 J

Air Sample Volume(L): 0.400

J = Estimated value,

Surrogates	%Recovery	Limits
Naphthalene-d8	91	50-150

Client Sample ID: B18SS-1-012617 Lab ID#: 1701478R1-02A

EPA METHOD TO-17

File Name:	6020112R1	Date of Extraction: NADate of Collection: 1/26/17 5:37:00 PM
Dil. Factor:	1.00	Date of Analysis: 2/1/17 01:26 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	2,5	0.64 J	1.6 J

Air Sample Volume(L): 0.400

J = Estimated value.

Surrogates	%Recovery	Limits
Naphthalene-d8	97	50-150

Client Sample ID: B18SS-2-012617 Lab ID#: 1701478R1-03A

EPA METHOD TO-17

File Name:	6020113R1 Date	of Extraction: NADate	e of Collection: 1/2	6/17 6:43:00 PM
Dil. Factor:	1.00	Date	e of Analysis: 2/1/1	7 02:06 PM
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)

1.0

2,5

Air Sample Volume(L): 0.400

J = Estimated value.

Naphthalene

Container Type: TO-17 VI Tube

Surrogates	%Recovery	Limits
Naphthalene-d8	91	50-150

0.58 J

1.4 J

Client Sample ID: B18SS-3-012617

Lab ID#: 1701478R1-04A EPA METHOD TO-17

	Dat Linia	Pot Limit Amount Amount
Dil. Factor:	1.00	Date of Analysis: 2/1/17 02:46 PM
File Name:	6020114R1 Date o	of Extraction: NADate of Collection: 1/26/17 6:23:00 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	2.5	0.83 J	2.1 J

Air Sample Volume(L): 0.400

J = Estimated value.

Surrogates	%Recovery	Method Limits
Naphthalene-d8	106	50-150

Client Sample ID: B18SS-4-012617 Lab ID#: 1701478R1-05A

EPA METHOD TO-17

File Name: 6020115R1 Date of Extraction: NADate of Collection: 1/26/17 5:13:00 PM

Dil. Factor: 1.00 Date of Analysis: 2/1/17 03:26 PM

Rpt. Limit Rpt. Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	2.5	0.64 J	1,6 J

Air Sample Volume(L): 0.400

J = Estimated value.

Surrogates	%Recovery	Limits
Naphthalene-d8	96	50-150

Client Sample ID: B18SS-5-012617

Lab ID#: 1701478R1-06A

EPA METHOD TO-17

File Name:	6020116R1 Date	of Extraction: NADate		I
Dil. Factor:	1.00	Date	of Analysis: 2/1/1	7 04:18 PM
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	2.5	0.89 J	2.2 J

Air Sample Volume(L): 0.400

J = Estimated value.

Naphthalene

Surrogates	%Recovery	Limits
Naphthalene-d8	96	50-150

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection handling or shipping of these samples. Relinquished signature also indicated agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hotline (800) 467-4922.

AIR TOXICS LTD. 180 BLUE RAVINE RD. SUITE B FOLSOM, CA 95630-1020 916-985-1000 main line 916-985-1020 fax line

Chain-of-Custody Record

TO-17

Page / of /

Project Manager: Terry Taylor		Project Information:	Turn Around Reporting Time: Units:
Company: Anderson Mulholland & Associate Address: 2700 Winchester, Suite 41 City: Purphone: 914-251-0400, ext. 309 FAX: Collected By (print and sign): David Lind.	rchase State:NY Zip: 10577	P.O. # Project # Project Name BMS VI Invest. Buildings 8, 13, 15, 18, and 30	Normal □ ppmv □ ppbv ☑ ug/m3 Specify □ mg/m3
Lab Field Sample I.D.	Cartridge Collection Tir	ne Time Volume	Analysis Requested Hapk-Kilow
000 B1855-1-012617	150050 1/24/17 13	140 1743 3min 0.40 134 1737 3min 0.40 40 1843 3min 0.40	naphhalens
04A BISSS - 3 - 012617 05A BISSS - 4 - 012617	135660 1/26/17 18	20 1823 3 min 0.49 710 1713 3 min 0.49) TiephHalene
DUA 13/855-5-0124/7	143614 1/26/17 16	100 1803 3 near 0.4	S PARAMETERS.
10 10 10 10 10 10 10 10 10 10 10 10 10 1			
Refinquished Bf: (Signature) Data/Time	Received By: (Signature) Date/Time Received By: (Signature) Date/Time (2.1) Received By: (Signature) Date/Time		Notes:
Shipper Name Ai Lab Use Fed Ex Only	Bill# Opened By AB	Tompo	Custody Seals Work Order # 1701478

EXECUTIVE NARRATIVE

SDG No:

1701478R1

Laboratory:

Eurofins, Folson, CA

Analysis:

TO-17

Number of Samples:

Location:

SUMMARY:

Six (6) samples were analyzed for the naphthalene in ambient air following Compendium Method TO-17. The sample results were assessed according to USEPA documents in the following order of precedence: the quality control performance criteria of "Compendium Method TO-17. Determination of Volatile Organic Compounds (VOCs) In Ambient Air Using Active Sampling Onto Sorbent Tubes (modified), January, 1999". In addition the following guideline is employed for the evaluation of the set-up of the GC/MS analytical system including column selection, MS tune requirements, calibration protocols, etc., as per TO-17 method requirements: USEPA Hazardous Waste Support Branch. Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #6. June, 2014).The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

Major:

None None

Minor: None

Critical findings: Major findings:

None None

Minor findings:

1. All samples analyzed within the recommended method holding time. Samples received in good conditions and no receiving discrepancies were observed except the cases described in the Data Review Worksheet. A Temperature Blank was included with the shipment. Temperature was measured and was not within 4±2 °C. Coolant in the form of blue ice was present. Analysis proceeded; no action taken professional judgment.

 ${f 2.}$ No data provided to determine the % difference in sample flow rate (beginning/end). ${f 0.4}$

L of sample collected.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Rafael Defaut

Signature:

Date:

March 29, 2017

NAPHTHALENE DATA SAMPLE SUMMARY

METHOD:

TO-17

NAPHTHALENE - TO 17

Sample ID	Date	Results	Units	Dilution Factor	Lab Flag	Validation	Reportable
1701478R1-01A	1/26/2017	0.61	ng	1.0	J	J	Yes
1701478R1-02A	1/26/2017	0.64	ng	1.0	J	J	Yes
1701478R1-03A	1/26/2017	0.58	ng	1.0	1	J	Yes
1701478R1-04A	1/26/2017	0.83	ng	1.0	J	J	Yes
1701478R1-05A	1/26/2017	0.64	ng	1.0	J	J	Yes
1701478R1-06A	1/26/2017	0.89	ng	1.0	J	J	Yes

	Date:	01/26/2017
REVIEW OF VOLATILE ORGANIC For the following guidelines for evaluating volatile organics were creations. This document will assist the reviewer in using profession decision and in better serving the needs of the data users. The same USEPA the documents described in the following order of preceding Method TO-17. Determination of Volatile Organic Compounds (VOC) Onto Sorbent Tubes (modified), January, 1999"; In addition the fee evaluation of the set-up of the GC/MS analytical system including control calibration protocols, etc., as per TO-17 method requirements: USE Validating Air Samples. Volatile Organic Analysis of Ambient Air in HW-31. Revision #6. June, 2014). The QC criteria and data valid worksheets are from the primary guidance document, unless otherwing the hardcopied (laboratory name) _EurofinsAir_Toxics	reated to deline onal judgment to uple results were dence: QC crite ollowing guideling ollowing guideling olumn selection, actions listed at a pack-	o make more informed assessed according to eria from "Compendium r Using Active Sampling ne is employed for the MS tune requirements, Waste Support Branch. Wethod TO-15, (SOP # ted on the data review kage received has been
Lab. Project/SDG No.:1701478R1 No. of Samples:6	Sample ma	ıtrix:Air
Trip blank No.:	CLaborator CField Dupl CCalibration	y Control Spikes licates ns d Identifications d Quantitation
Overall Comments:Naphthalene_by_method_TO-17_	(modified)_dete	ection_by_full_scan
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect		
Reviewer: Rafuel Dufacet		
Date: 03/29/2017		

Project Number:__1701478R1_

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
1		
		10-1/9W1 - R
-		
-		
- The late 1 1 1 1 1 1 1 1 1	1023400.00	100
	1	
	_	
		10.00
2		
		35.15 Th
x	-	V-VUSE - 1
	-	
		1
		4
		-

All criteria were met _	х_	
Criteria were not met		
and/or see below	200	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	> 10% difference in sample flow rate (beginning/end)	ACTION
conditions and no document. A Temp was not within 4±2	receiving discreperature Blank was 2°C. Coolant in the 1 judgment. No da	epancies were as included with the form of blue ata provided to	observed except the the shipment. Temper ice was present. Analy	amples received in good cases described in this ature was measured and rsis proceeded; no action ence in sample flow rate

Criteria

Samples should be refrigerated at <4°C in a clean environment during storage and analyzed within 30 days of sample collection (within one week for limonene, carene, *bis*-chloromethyl ether and labile sulfur or nitrogen containing volatiles). Samples taken on tubes containing multiple sorbent beds should be analyzed as soon as possible after sampling unless it is know in advance that storage will not cause significant sample recovery errors.

Receiving temperature: 12.9°C

Actions

If holding times are exceeded use professional judgment to qualify positive results and non-detects.

Performance Criteria for the Monitoring Pump

Sampling pump errors can normally be presumed to be in the order of 5% (8). If the pump sampling flow rate measured at the end of sample collection varies more than 10% from that measured at the beginning of sample collection, then that sample is invalidated.

All criteria were metX_	
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits. The following actions from the TO-15 compendium method are employed.

Gas Chromatograph/Mass Spectrometer (GC/MS) Instrument Performance Check

Action:

NOTES: This requirement does not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB or DFTTP failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

- 1. If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).
- 2. If the laboratory has made minor transcription errors which do not significantly affect the data, the data reviewer should make the necessary corrections on a copy of the form.
- 3. If the laboratory has failed to provide the correct forms or has made significant transcription or calculation errors, the Region's designated representative should contact the laboratory and request corrected data. If the information is not available, the reviewer must use professional judgment to assess the data and notify the Project Officer (PO).
- 4. If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.
- 5. Note, in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance check failures (not meeting contract requirements).
- 6. If the reviewer has reason to believe that instrument performance check criteria were achieved using techniques other than those described in the Compendium method TO-15 entitled "Determination Of Volatile Organic Compounds(VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry(GC/MS)", section 10.4, obtain additional information on the instrument performance checks. If the techniques employed are found to be at variance with the contract requirements, the performance and procedures of the laboratory may merit evaluation.
- 7. Use professional judgment to determine whether associated data should be qualified based on the spectrum of the mass calibration compound.

If mass calibrati	on is in error, all associated d	lata are rejected.	
List	the	samples	affected:
If no, use profe qualified or reject		ne whether the associated data	should be accepted,
_XBFB tur	ing was performed for every	24 hours of sample analysis.	
_XThe BF	B performance results were r	eviewed and found to be within th	e specified criteria.

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. The calibration criteria and appropriate actions from the compendium method TO-15 are employed.

Date of initial calibration:	01/27/17
Dates of continuing calibration:_	02/01/17
Instrument ID numbers:MSI	
Matrix/Level:Ai	r/low

DATE	LAB ID#	FILE	CRITERIA OUT	COMPOUND	SAMPLES AFFECTED
	IU#		RFs, %RSD, %D, r		AFFECTED
					<u> </u>
Initial and o	continuir	ng calibi	rations meet method sp	pecific requirements. Initia	l calibration retention
			requirements.	•	
					
				_	
L.				_	

The following criteria apply:

Table 5. Initial Calibration Actions for TO-15 Analyses

	Act	ion
Criteria for TO-15 Analysis	Detected Associated Compounds	Non-Detected Associated Compounds
RRF < 0.010 (poor response volatile target compounds, Table 4) RRF < 0.050 (all other volatile target compounds)	J (based on mass spectral identification)	R
RRF > 0.010 (poor response volatile target compounds, Table 4) RRF > 0.050 (all other volatile target compounds)	No qualification	
% RSID > 40.0 or < -40.0 (poor response volatile target compounds, Table 4) % RSID > 30.0 or < -30.0 (all other Volatile target compounds)	No qualification	
% RSD < 40.0 and > -40.0 (poor response volatile target compounds, Table 4) % RSD < 30.0 and > -30.0 (all other volatile target compounds)	J	Use professional judgment

Table 6. Continuing Calibration Verification (CCV) Actions for TO-15 Analyses

	Act	ion
Criteria for CCV	Detected Associated Compounds	Non-Detected Associated Compounds
RRF < 0.010 (poor response volatile target compounds, Table 4) RRF < 0.050 (all other volatile target compounds)	J (based on mass spectral identification)	R
RRF > 0.010 (poor response volatile target compounds, Table 4) RRF > 0.050 (all other volatile target compounds)	No qualification	
%I) > 40.0 or < -40.0 (poor response volatile target compounds, Table 4) %I) > 30.0 or < -30.0 (all other Volatile target compounds)	J	ΩJ
%I) < 40.0 and > -40.0 (poor response volatile target compounds, Table 4) %I) < 30.0 and > -30.0 (all other volatile target compounds)	No qualification	

If the % D for daily calibration exceeds -90, use professional judgment to see if non-detects net to be qualified as unusable "R"

A separate worksheet should be filled for each initial curve

Table 4. TO 15 Volatile Compounds List*

Compound	CAS Number	Synonyms
Acetone	67-64-l	Dimethyl ketone; Dimethylformaldehyde; 2-Propanone
Allyl chloride	107-05-1	3-Chloropropene; 3-Chloroprene
Benzene	71-43-2	Benzol; Benzine
Benzyl chloride	100-44-7	Chloromethylbenzene; alpha-Chlorotoluene
Bromodichloromethane	75-27-4	Monobromodichloromethane; Methane-bromodichloro
Bromoethene	593-60-2	Vinyl bromide; Monobromoethene
Bromoform	75-25-2	Tribromoethane
Bromomethane	74-83-9	Methyl bromide; Monobromomethane
1.3-Butadiene	106-99-0	Biethylene; Erythrene; Pyrrolyene
Carbon disulfide	75-15-0	Carbon bisulfide; Carbon sulfide
Carbon tetrachloride	56-23-5	Carbon tet; Tetrachloromethane
Chlorobenzene	108-90-7	Monochlorobenzene; Chlorobenzol; Benzene chloride
Chloroethane	75-00-3	Ethyl chloride; Chlorene; Chloryl
Chloroethene	75-01-4	Vinyl chloride; Ethylene monochloride
Chloroform	67-66-3	Trichloromethane; Methyltrichloride; Methane trichloride
Chloromethane	74-87-3	R40; Methyl chloride; Monochloromethane
Cyclohexane	110-82-7	Hexamethylene; Hexahydrobenzene; Hexanaphthene
Dibromochloromethane	124-48-1	Chlorodibromomethane
1,2-Dibromoethane	106-93-4	EDB; Ethylene dibromide
1.2-Dichlorobenzene	95-50-1	ODB; Chloroben
1.3-Dichlorobenzene	541-73-1	meta-Dichlorobenzene; m-Phenylenedichloride
1.4-Dichlorobenzene	106-46-7	para-Dichlorobenzene; Parazene; Santochlor
1.1-Dichloroethane	75-34-3	Ethylidene chloride; Ethylidene dichloride
1.2-Dichloroethane	107-06-2	Ethylene dichloride; Glycol dichloride; 1.2-DCA
1.1-Dichloroethene	75-35-4	1.1-DCE; Vinylidene chloride
cis-1.2-Dichloroethylene	156-59-2	cis-1,2-DCE; cis-Acetylene dichloride
trans-1.2-Dichloroethylene	156-60-5	trans-1.2-DCE; trans-Acetylene dichloride
1,2-Dichloropropane	78-87-5	Propylene dichloride: Propylene chloride
cis-1.3-Dichloropropene	10061-01-5	1-Propene,1,3-dichloro-,(z)-; eis-1,3-Dichloro-1-Propene
trans-1.3-Diehloropropene	10061-02-6	trans-1.3-Dichloro-1-Propene, trans-1.3-Dichloropropylene
1,4-Dioxane	123-91-1	Diethylene dioxide; Diethylene ether
Ethyl acetate	141-78-6	Acetic acid ethyl ester, Acetic ether
Ethylbenzene	100-41-4	Ethylbenzol: Phenylethane
4-Ethyltoluene	622-96-8	I-Ethyl-4-methyl benzene; p-Methylethylbenzene
Freon 11 (CCl3F)	75-69-4	Trichlorofluoromethane; Fluorotrichloromethane; Fluorocarbon 11

Freon 12 (CCl2F2)	75-71-8	Dichlorodifluoromethane; Fluorocarbon 12
Freon 113 (C2Cl3F3)	76-13-1	1.1.2-Trichloro-1.2.2-trifluoroethane; Fluorocarbon 113; 1.1.2-
		Trichlorotrifluoroethane
Freon 114 (C2Cl2F4)	76-14-2	1.2-Dichlorotetrafluoroethane; Halocarbon 114; 1.2-Dichloro-
		1.1.2.2-tetrafluoroethane
Heptane	142-82-5	Dipropylmethane; Heptyl hydride
Hexachforobutadiene	87-68-3	1.3-Hexachlorobutadiene; Perchlorobutadiene
Hexane	110-54-3	n-Hexane; Hexyl hydride
2-Hexanone	591-78-6	Methyl butyl ketone; Butyl methyl ketone; Hexan-2-one
Isopropyl alcohol	67-63-0	2-Propanol; Isopropanol
Methylene chloride	75-09-2	Dichloromethane; Methylene dichloride
Methyl ethyl ketone	78-93-3	MEK; 2-Butanone; Ethyl methyl ketone
Methyl isobutyl ketone	108-10-1	MfBK; 2-Pentanone; Hexone; Isopropylacetone
Methyl tert-butyl ether	1634-04-4	MTBE; 2-Methoxy-2-methylpropane; tert-Butyl methyl ether
Propylene	115-07-1	Propene; Methylethylene
Styrene	100-42-5	Vinylbenzene; Phenylethylene
1.1.2.2-Tetrachloroethane	79-34-5	Tetrachloroethane; Acetylene tetrachloride; Bonoform
Tetrachloroethene	127-18-4	PCE; PERC; Perchloroethylene; Ethylene tetrachloride; Carbon
		bichloride; Carbon dichloride
Tetrahydrofuran	109-99-9	Diethylene oxide; Butylene oxide
Toluene	108-88-3	Toluol; Methylbenzene
1.2.4-Trichlorobenzene	120-82-1	1.2.4-Trichlorobenzol
1.1.1-Trichloroethane	71-55-6	Methyl chloroform; Trichloroethane
1.1.2-Trichloroethane	79-00-5	beta-Trichloroethane; Ethane trichloride; Vinyl trichloride
Trichloroethene	79-01-6	TCE; Acetylene trichloride; Ethinyl trichloride
1.2.4-Trimethylbenzene	95-63-6	Pseudocumene; Pseudocumol
1.3.5-Trimethylbenzene	108-67-8	Mesitylene; Trimethylbenzol
2.2.4-Trimethylpentane	540-84-1	Iso-octane; Isobutyltrimethylmethane
Vinyl acetate	108-05-4	Acetic acid ethenyl ether; Ethenyl acetate
p-Xylene	106-42-3	p-Methyltoluene; 1.4-dimethylbenzene
m-Xylene	108-38-3	m-Methyltoluene; 1,3-dimethylbenzene
o-Xylene	95-47-6	o-Methyltoluene; 1.2-Dimethylbenzene

^{*1.}aboratories use different sets and subsets of analytes on as needed basis.

NOTES:

Compounds in bold italicized letters may have poor GCMS response. These poor response compounds are evaluated using more relaxed relative response factor criteria as stated below.

Note: Naphthalene does not have poor GCMS response. Calibration criteria: RRF > 0.05 and % difference in the continuing calibration verification < 30 %.

All criteria were met_	Х
Criteria were not met	
and/or see below	_

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	l_blank_meet_i	method_specific	_criteria	

Field blanks

Field blanks are the same as laboratory blanks except that they are transported to and from the monitoring site, are uncapped and immediately resealed at the monitoring site, but do not actually have air pumped through them. One field blank tube is taken for every ten sampled tubes on a monitoring exercise.

Criteria:

If the same profile/pattern of VOCs is observed on the field blanks as on the sampled tubes and if the level of these components is 5% or more of the sampled volatiles, careful attention must be paid to the method of sealing the tubes and other storage procedures in future studies. If the profile of volatiles on the field blanks matches that of the sampled tubes and if the areas of the peaks on the field blank are 10% or more of sampled tube levels, the sampled tube data are invalidated.

DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
No_field/equip	ment_blank_an	alyzed_with_th	is_data_package	

Note:

All criteria were met_	Х_	_
Criteria were not met	leber 1	
and/or see below		

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				-	
			- 42		
		1			
1					

All criteria were met_	X
Criteria were not met	
and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

Q/	۸R	ΙP	11	E 1	
	-	"	1 1	_	

SURROGATE COMPOUND

ACTION

1,2- Naphthalene-d8 4-BFB DICHLOROETHANE-d4

_Surrogate_recoveries_within_lab	oratory_control_limits	_
		_
		_
QC Limits* (Air)		
LL_to_ULto_	toto_	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met _	х_	
Criteria were not met		
and/or see below		

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
		e)_analyzed_in_this_data_ l_limits	package;_%_recoveries	s_and_RPD
-				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

Table 9. LCS/LCSD Actions for TO-15 Analyses

	Action		
Criteria	Detected Associated Compounds	Non-detected Associated Compounds	
Percent recovery Criteria			
%R > Upper Acceptance Limit (>130%)	J	No qualification	
%R in the acceptable range, 70-130%	No qualification		
%R < Lower Acceptance Limit (< 70 %)	1 UJ		
%R < 50%	J	R	
Lower Acceptance Limit \leq %R \leq Upper Acceptance Limit	No qualification		
Relative Percent Difference Criteria			
% RPD ≤ 25%	No qu	ialification	
% RPD > 25 %	J	UJ	

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	LABORATORY/FIELD DUPLICATE PRECISION	
	Sample IDs:_B18SS-1DUP-012617/B18SS-1-012617_(field)_ Sample IDs:_LCS/LCSD_(laboratory)	Matrix:Air Matrix:Air

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 50% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
m					
				4 1	1
	55.55	The same of			

Note: Laboratory field duplicates analyzed as part of this data set. Laboratory duplicate were within method performance criteria.

Field duplicates RPD are within method performance criteria.

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	х_
Criteria were not met	
and/or see below	22.5

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within ± 20 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
(100 pt)	tandard_area_and_reration_standards		The state of the s		both_samples
Actions:					

Table 10. Internal Standard Actions for TO-15 Analyses

	Act	Action		
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*		
Area counts > 140% of CCV or mid-point standard from initial calibration)	J-	No qualification		
Area counts < 60% of CCV or mid-point standard from initial calibration)	J+	R		
Area counts \geq 60% but \leq 140% of CCV or mid-point standard from initial calibration)	No qual	ification		
RT difference > 20.0 seconds between samples CCV or mid- point standard from initial calibration)	R*			
RT difference < 20.0 seconds between samples and CCV or mid-point standard from initial calibration)	No qualification			

^{*} Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

All criteria were met_	X_
Criteria were not met	
and/or see below	2.5

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1701478R1-06A

Naphthalene

RF = 1.78438

[] = (21800)(36)/(492395)(1.78438)

= 0.893 ng OK

All criteria were met _	Х_	
Criteria were not met		
and/or see below	10.0	

- XII. QUANTITATION LIMITS
- A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
No dilution perf	ormed.	
_		
	7	
Total Control of the		

System Performance

Action:

Use professional judgment to qualify the data if it is determined that system performance has degraded during sample analyses. Note, for Laboratory Project Officer (PO) action, any degradation of system performance which significantly affected the data.

Note:

Overall Assessment of Data

Action:

1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.

2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Note, for Laboratory Project Officer (PO) action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Note:

Results are valid; the data can be used for decision making purposes.